

Micus Real Time Software Inc.
5863 Leslie St. Suite 127
Toronto, Ontario
M2H 1J8
Canada
Tel: (416) 493 3623
Fax: (416) 502 9083
www.micus.ca

MACS COMMUNICATION PROTOCOL SPECIFICATION

Revision 4.0

September 16, 2014

 MACS Communication Protocol Specification

1

Table of Contents
1 Revision History .. 2

2 Introduction ... 3

3 Electrical Interfaces... 4

4 Network Interfaces .. 6

5 Communication Protocol ... 8

5.1 STX and ETX Bytes Substitution.. 8

5.2 Packet Header... 9

5.3 Packet Trailer .. 9

5.4 Packet Exchange Rules... 9

5.5 Encoding Rules ... 10

5.5.1 Boolean and 32-Bit Integer Numbers .. 11

5.5.2 64-Bit Integer numbers ... 12

5.5.3 Single-Precision Floating Point Numbers .. 12

5.5.4 Double-Precision Floating Point Numbers ... 13

5.5.5 Text Strings .. 13

5.5.6 Lists of Values .. 14

6 Command Set ... 15

6.1 Get Command and Response.. 16

6.2 Get Record Command and Response.. 18

6.3 Set Command and Response .. 18

6.4 Set Record Command and Response .. 20

6.5 List Command and Response.. 20

6.6 Event Report ... 23

6.7 Error Response ... 23

 MACS Communication Protocol Specification

2

1 Revision History

Revision: Date: Description: Prepared by:

1.0 Dec. 14, 2005 First draft. M. Bankovitch

2.0 May 14, 2007 Addresses and OIDs extended to 2
bytes.
Support for float and double encodings
added.
Broadcast packets added.

M. Bankovitch

3.0 August 1, 2007 LIST request added. M. Bankovitch

4.0 September 16, 2014 Support for 64-bit integers added.
Unsolicited event reports added.
Get Record and Set Record
commands added.
Operation over cellular network added.

M. Bankovitch

Copyright Notice:

The entire contents of this manual are copyright © by Micus Real Time Software Inc.
All rights reserved. The contents of this manual are subject to change without notice.

 MACS Communication Protocol Specification

3

2 Introduction

The latest generation of the embedded Micus Real Time Software Inc. products supports remote
monitoring and control via serial communication lines, wired and TCP/IP connections, cellular networks and
SMS messages. This document contains the definition of the electrical interfaces and the application layer
communication protocol used to monitor and control these products.

Micus Alarm and Control System (MACS) Communication Protocol is an open protocol. Although Micus
Real Time Software Inc. maintains the copyright on the protocol definition, there are no restrictions and
royalties attached to the protocol use. Other vendors are welcome and encouraged to use the protocol in
their products.

The document is structured as follows:

• Section 3 specifies the electrical interfaces and network interfaces used for communication between
monitoring and control systems and controllers embedded in the equipment

• Section 4 defines the structure and format of the protocol packets

• Section 5 defines a list of commands used to monitor and control devices attached to the serial lines
or network interfaces

The intended audience for this document is:

• System integrators and maintenance personnel

• Software developers

 MACS Communication Protocol Specification

4

3 Electrical Interfaces

Many Micus Real Time Software Inc. and other manufacturer products that support remote monitoring
and control are equipped with RS232 serial interface ports. The RS232 interface allows a single piece of
equipment to be connected to the computer via a serial line, as illustrated in the following picture.

Since both the computer and the equipment are DTE devices, a standard RS232 null-modem cable must
be used to connect them. If the computer is not equipped with an RS232 port, a USB to serial port adapter
can be used.

The RS232 interface also allows connections to the remote sites via telephone lines. In such case the
equipment requires an external modem connected to the equipment using a standard RS232 straight cable.
In such a scenario it is strongly recommended setting the modem inactivity timeout to 10 to 15 seconds.

If there is a need to interface more than one equipment unit via the same serial line, an optional RS485
port must be installed in each unit and in the computer itself. The RS485 interface allows multiple units to be
daisy-chained into a party line. When querying an individual unit, the computer uses unit address, described
in the next section of this document. Only the addressed unit replies to the query, while other units on the
party line ignore the query. A party line with several daisy-chained units is depicted in the following picture.

 MACS Communication Protocol Specification

5

MACS communication protocol also supports broadcast packets. When equipment units receive
broadcast packets, they process them but do not respond to the originator.

Connecting multiple units into a daisy chain requires special cabling. Wiring details are usually provided
with the equipment. Please note that RS485 electrical interface supports up to 32 connected devices.

The equipment usually supports the following serial port settings:

• Standard data rates between 1200 Bd and 115,200 Bd

• Even, odd or no parity

• One start and one stop bit

• This protocol requires eight data bits

 MACS Communication Protocol Specification

6

4 Network Interfaces

Many products support TCP/IP connections over a wide area, local area or wireless networks. MACS
communication protocol supports TCP/IP network connections. When a TCP or UDP connection is used,
MACS protocol packets are simply encapsulated in the TCP or UDP packets.

MACS protocol can be also used over cellular networks. In such case MACS protocol packets may be
encapsulated into Short Message Service (SMS) messages.

The format and content of MACS protocol packets is exactly the same over serial lines, network
connections and SMS messages. While some of the fields, such as source and destination address and
checksum, are redundant when using TCP/IP, keeping the same packet structure simplifies the software,
and reduces its size.

A typical local area (LAN) network connection is depicted in the following picture:

MACS protocol can be also used over cellular networks, to manage mobile devices, such as automotive
telematics units. When communicating over a cellular network, data connection is still established using a
TCP protocol. However, only the mobile device can originate a TCP connection request. In such case the
backend server sends an SMS message to the mobile unit to request such connection. The SMS messages
contain the same MACS protocol packets as any other transport media.

A typical cellular network connection is depicted in the following picture:

 MACS Communication Protocol Specification

7

 MACS Communication Protocol Specification

8

5 Communication Protocol

This section contains the definition of the communication protocol packets used to exchange information
between the computer and the equipment units. The exact content of each packet carrying computer
commands and equipment responses is defined in the next section.

Computer queries and equipment responses are encapsulated into packets. A packet consists of a
header, a trailer and user data. Each packet may contain up to 1024 bytes of user data. This basic structure
is depicted in the following diagram.

Header User Data Trailer

 The header is used to synchronize packet transmission, and to indicate to the receiving end the size of
the user data segment. The header also contains information on which entity is sending the packet, and
which entity is the recipient. The header always starts with the Start of Text (STX) character (02H). The
second and third byte in the header contain the source address, the fourth and fifth byte contain the
destination address, and the sixth and seventh byte contain the size of the user data segment.

The trailer contains a checksum used to verify packet integrity, followed by the End of Text (ETX)
character (03H).

Actual queries and responses are contained in user data segment, defined in the next section of this
document.

The overall packet structure can be presented as follows:

STX Source
Address

Destination
Address Size User Data Checksum ETX

5.1 STX and ETX Bytes Substitution

Each packet starts with an STX character and ends with an ETX character. These characters are used
by the receiving entity to detect start and end of the packet. Upon receiving a packet, the receiving entity
discards STX and ETX bytes and processes all other bytes in between. However, since the protocol is used
to transmit binary data, it is entirely possible that addresses, user data and checksum contain STX (02H)
and/or ETX (03H) binary values. If an address, user data or the checksum contains such bytes, they must
be substituted with two bytes of the same value. When the receiving entity detects an STX or ETX byte, it
discards it. If such byte is immediately followed by another byte of the same value, the receiving entity
assumes that the second byte is part of the address, user data or checksum.

 MACS Communication Protocol Specification

9

5.2 Packet Header

Each packet header consists of seven bytes, excluding STX substitution. The first byte is an STX byte,
which marks the beginning of the packet. The second and third byte contain the source address, which
uniquely identifies the entity sending the packet. The fourth and fifth byte contain the destination address,
which uniquely identifies the entity receiving the packet. The sixth and seventh byte contain the size of the
user data segment, which may be up to 1024 bytes long. The size of the user data segment is calculated
before STX and ETX byte substitution described above.

Addresses and user data size are transmitted in network byte order, which is the MSB byte first, the LSB
byte last.

Valid address range is from 0 to 65535, where address 0 is reserved for the broadcast messages,
address 1 is by convention reserved for the computer itself, and all other addresses can be assigned to the
equipment units.

5.3 Packet Trailer

Each packet trailer consists of two bytes: the checksum byte and the ETX byte. The checksum is
calculated as an exclusive OR on all bytes from the source address byte up to the checksum byte, but
excluding the checksum byte itself1. STX and ETX bytes are not included in the checksum calculation. The
checksum is calculated before STX and ETX byte substitution. If the calculated checksum value is 02H or
03H then the checksum byte itself must be substituted with two consecutive bytes of the same value.

5.4 Packet Exchange Rules

The equipment may send unsolicited messages, referred to as the event reports, over a serial line or
network connection. The connection used for unsolicited messages must be a full duplex connection.

The equipment also responds to the requests received from the computer. Each request from the
computer is contained in a single packet. Once the equipment receives a valid request, it responds by
sending exactly one packet back to the computer.

Invalid or corrupted packets are discarded. For example, if the checksum is wrong, the packet is not
processed and the equipment does not send any response to the computer.

A valid packet from the computer contains a source and a destination address. The source address is
that of the computer itself, while the destination address selects the equipment unit. When a party line is
used, all daisy-chained units receive the same packet. Each unit compares the destination address with its
own pre-configured address2. Units that are not addressed ignore the packet. Only the addressed unit
responds.

If a broadcast packet is received, all units service the request, but do not respond to the computer.

1 When verifying the checksum, the receiving entity may calculate the checksum for the addresses, user data size, and user data bytes
and then applies the exclusive OR operation between the calculated checksum and the checksum byte found in the packet. If the
packet is valid the result must be 0.

2 The address might be either stored in a non-volatile memory, or set using a DIP switch.

 MACS Communication Protocol Specification

10

When formatting a response packet, the addressed unit takes the source address from the request
packet and inserts it into the destination address field of the response packet. It then inserts its own address
into the source address field.

Once the user data segment is populated with the requested information, the unit calculates and inserts
the user data size and the checksum.

While sending a packet, each time an STX or ETX value is encountered within the packet, it gets
substituted with two consecutive bytes of the same value. This does not apply to the very first STX and the
very last ETX byte.

The maximum packet size is 1033 bytes. At the lowest supported speed of 1200 Bd it takes about 10
seconds to transmit such packet. Thus, if the entire packet is not received within 10 seconds, the incomplete
packet is dropped. Timeout may be adjusted to lower values, depending on the exact physical connection
being used.

5.5 Encoding Rules

The user data segment usually contains a list of parameters and their respective values. The protocol
allows the computer to query or to set over 140 numeric parameters within a single packet. The number of
text parameters that can be included into a single packet depends on the length of each character string.
Such a large number of parameters transmitted in a single packet is achieved by formatting the user data
segment as follows.

The user data segment always starts with an opcode. The opcode is a byte that identifies the command
or response contained in the packet. A list of valid opcodes is defined in the next section.

The next byte in the user data segment indicates how many parameters to expect in the parameter list.

The remaining part of the user data segment contains a list of parameters. The structure of the user data
segment is shown in the following diagram:

Opcode Parameter Count Parameter List

The values of the parameters in the list must have one of the following data types:

• Boolean numbers

• Unsigned integer numbers

• Signed integer numbers

• Single-precision floating point numbers

• Double-precision floating point numbers

• Text strings

The protocol supports the following data types:

 MACS Communication Protocol Specification

11

Data Type Identifier

Analog 32-bit Integer Input 1

Analog 32-bit Integer Output 2

Single-precision Floating Point Input 3

Single-precision Floating Point Output 4

Boolean (Digital) Input 5

Boolean (Digital) Output 6

Text Input 7

Text Output 8

Double-precision Floating Point Input 9

Double-precision Floating Point Output 10

Analog 64-bit Integer Input 11

Analog 64-bit Integer Output 12

Note that protocol packet encoding does not indicate the semantics of the parameters being transmitted.
This means that the software querying or setting parameter values must be aware of how to interpret the
values associated with any given parameter ID.

The valid parameter set is equipment-specific. Therefore, a list of valid parameter IDs, associated data
types and numerical ranges must be explicitly defined in the equipment-specific documentation.

5.5.1 Boolean and 32-Bit Integer Numbers

Boolean and 32-bit integer parameters are always encoded using 7 bytes. The first two bytes contain a
number from 1 to 65535, which uniquely identifies the parameter within a given type of equipment. This
means that protocol supports up to 65535 parameters within a given equipment unit.

The parameter ID is followed by one byte that uniquely identifies the data type being transmitted.

 The remaining four bytes contain parameter value. Parameter ID and value are encoded by transmitting
the most significant byte (MSB) first and the least significant byte (LSB) last, using the natural byte order.

Parameter ID Data Type MSB … … LSB

Boolean parameters take value of 0 or 1.

Unsigned 32-bit integers have range from 0 to 4,294,967,295.

Signed 32-bit integers have range from -2,147,483,648 to 2,147,483,647.

 MACS Communication Protocol Specification

12

5.5.2 64-Bit Integer numbers

64-bit integer parameters are always encoded using 11 bytes. The first two bytes contain a number from
1 to 65535, which uniquely identifies the parameter within a given type of equipment. This means that
protocol supports up to 65535 parameters within a given equipment unit.

The parameter ID is followed by one byte that uniquely identifies the data type being transmitted.

 The remaining eight bytes contain parameter value. Parameter ID and value are encoded by
transmitting the most significant byte (MSB) first and the least significant byte (LSB) last, using the natural
byte order.

Parameter ID Data Type MSB … … LSB

Unsigned 64-bit integers have range from 0 to 18,446,744,073,709,551,615.

Signed 64-bit integers have range from −9223372036854775807 to +9223372036854775807.

5.5.3 Single-Precision Floating Point Numbers

Single-precision floating point numbers are encoded using 7 bytes. The first two bytes contain a number
from 1 to 65535, which uniquely identifies the parameter within a given type of equipment. This means that
protocol supports up to 65535 parameters within a given equipment unit.

The parameter ID is followed by one byte that uniquely identifies the data type being transmitted.

 The remaining four bytes contain parameter value. Parameter ID and value are encoded by transmitting
the most significant byte (MSB) first and the least significant byte (LSB) last, using the natural byte order.

Parameter ID Data Type MSB … … LSB

A single-precision floating point number is stored into four bytes of memory as depicted in the following
diagram:

Single-precision floating point numbers offer 7 significant digits within the range of +/- 3.4 E +/- 38.

 MACS Communication Protocol Specification

13

5.5.4 Double-Precision Floating Point Numbers

Double-precision floating point numbers are encoded using 11 bytes. The first two bytes contain a
number from 1 to 65535, which uniquely identifies the parameter within a given type of equipment. This
means that protocol supports up to 65535 parameters within a given equipment unit.

The parameter ID is followed by one byte that uniquely identifies the data type being transmitted.

 The remaining eight bytes contain parameter value. Parameter ID and value are encoded by
transmitting the most significant byte (MSB) first and the least significant byte (LSB) last, using the natural
byte order.

Parameter ID Data Type MSB … … … … … … LSB

A double-precision floating point number is stored into eight bytes of memory as depicted in the following
diagram:

Double-precision floating point numbers offer 15 significant digits within the range of +/- 1.7 E +/- 308.

5.5.5 Text Strings

Text strings have variable length. Thus, the encoding must indicate how many bytes to read. This is
achieved by adding the length byte after the parameter ID and data type.

The first two bytes contain a number from 1 to 65535, which uniquely identifies the parameter within a
given type of equipment. This means that protocol supports up to 65535 parameters within a given
equipment unit.

The parameter ID is followed by one byte that uniquely identifies the data type being transmitted.

The next byte indicates the length of the text string. The length byte is followed by the actual ASCII
characters.

Parameter ID Data Type Length ASCII ASCII …

The length of the text strings is limited to 254 characters.

 MACS Communication Protocol Specification

14

5.5.6 Lists of Values

Many applications use arrays or linked lists of parameters of the same type. Transmitting such a list can
be optimized by encoding the ID and data type only once for the entire list. In such case, the parameter ID
identifies the entire list.

The first two bytes contain a number from 1 to 65535, which uniquely identifies the list of parameters
within a given type of equipment.

The parameter ID is followed by one byte that uniquely identifies the data type that applies to all values
being transmitted in the list.

The next byte indicates the number of values in the list. The length byte is followed by a list of values.
The maximum number of values in the list is 255.

Parameter ID Data Type List Count Value 1 Value 2 …

Lists can be used only for the numerical data types. They do not apply to text strings.

 MACS Communication Protocol Specification

15

6 Command Set

Using the MACS communication protocol, the computer can query the equipment status, read
configuration and operational parameters and statistics, and set configuration parameters to the desired
values.

The exact set of parameters depends on the equipment itself. This protocol definition is generic and
applies to all products using the protocol. Details on the parameter set applicable to any given type of
equipment must be provided in the equipment-specific documentation.

MACS communication protocol supports only the following commands3:

• Get Command

• Set Command

• Get Record Command

• Set Record Command

• List Command

These commands are sufficient to monitor and configure the equipment and to execute any remote
operations in the equipment. For example, to query equipment status, the computer will get a list of relevant
parameters. To tune the equipment, the computer will set the frequency and gain parameters. To reset the
equipment, the computer may set the Boolean reset parameter to 1. To execute a program in the remote
equipment, the computer will set a text parameter to the name of the program to execute.

Since each command may contain a substantially long list of parameters, a single command and a single
response should suffice for most of the queries.

The protocol also supports the following responses:

• Get Response

• Set Response

• Get Record Response

• Set Record Response

• List Response

• Error Response

In addition to the commands and responses, the protocol also allows remote units to send unsolicited
event reports, also referred to as notifications. A particular implementation of the protocol can use
unsolicited messages only if the underlying physical interface supports it. For example, unsolicited
messages cannot be used over the RS 485 interface. There is no response to unsolicited event reports.

Each of the above commands and responses is identified by a unique opcode, which appears as the first
byte in every user data segment. The opcodes are defined as follows:

3 It is envisioned that the next protocol revision will also support the Get Next command.

 MACS Communication Protocol Specification

16

Opcode Name Opcode Value
1. Get Command 11H
2. Set Command 12H
3. Get Response 13H
4. Set Response 14H
5. Get Record Command 19H
6. Set Record Command 1BH
7. Get Record Response 1AH
8. Set Record Response 1CH
9. List Command 16H
10. List Response 17H
11. Event Report 18H
12. Error Response 15H

The next byte after the opcode indicates how many parameters to expect and the remaining bytes in the
user data segment contain the actual list of parameters.

6.1 Get Command and Response

The Get Command and the associated response are used to query equipment status, statistics and
configuration parameters. The computer can use a single packet to query any number of parameters, as
long as their IDs and values can fit into the number of bytes available to the user data segment. If the size of
the list of parameters and values exceeds the available space, the equipment returns an appropriate error
response.

The parameters being queried do not have to be of the same data type. A query can contain any mixture
of valid Boolean, integer, floating point and text parameters. A typical get command requesting a list of
parameters has the following form:

STX SRC DST SIZE 11H n PID1 DT1 PID2 DT2 … PIDn DTn CHK ETX

Where:

STX byte marks the start of the packet

SRC contains two-byte source address

DST contains two-byte destination address

SIZE contains two-byte size of the user data

11H is the get command opcode

n byte contains the parameter count

PID1 … PIDn represent two-byte parameter IDs

DT1 … DTn Represent a single-byte data type

CHK byte contains the checksum

ETX byte marks the end of the packet

 MACS Communication Protocol Specification

17

The equipment checks the consistency of the command and may detect and return one of the following
errors:

• Invalid size

• Invalid parameter count

• Invalid parameter ID

If there are no errors in the get command packet, the equipment returns a list of requested parameters
with their respective values:

STX SRC DST SIZE 13H n PID1 DT1 VAL1 PID2 DT2 VAL2 … PIDn DTn VALn CHK ETX

Where:

STX byte marks the start of the packet

SRC contains two-byte source address

DST contains two-byte destination address

SIZE contains two-byte size of the user data

13H is the get response opcode

n byte contains the parameter count

PID1 … PIDn represent two-byte parameter IDs

DT1 … DTn Represent single-byte data types

VAL1 … VALn represent values associated with PID1 … PIDn

CHK byte contains the checksum

ETX byte marks the end of the packet

If the equipment cannot fit the entire list of parameters into the response packet, it returns a “to many
parameters” error.

The following example illustrates a get command, which queries the equipment name, current frequency,
gain and operational temperature. Please note that the parameters used in this example are fictitious and do
not correspond to any actual equipment.

Computer address: 1

Unit address : 2

Parameters:

Parameter Name Parameter ID Data Type Present Value

Equipment name 04H Text string MICUS
Frequency 17H Single-precision 91,120 kHz
Gain 18H Double-precision 24.78 dB
Serial port data rate 0BH Integer 9600

To query these parameters, the computer will send a packet that contains the following get command:

 MACS Communication Protocol Specification

18

02 00 01 00 02 02 00 0E 11 04 00 04 08 00 17 04 00 18 0A 00 0B 02 02 1C 03

x – header and trailer

x – parameter ID

x – data type

Note that destination address and last data type contain STX substitution bytes.

The equipment will respond with a get response as follows:

02 00 02 02 00 01 00 24 13 04 00 04 08 05 4D 49 43 55 53 00 17 04 42 B6 3D 71

00 18 0A 14 7A E1 48 40 38 C7 AE 00 0B 02 02 00 00 25 80 BB 03

x – parameter value

Note that the above picture represents a single continuous packet, with highlighted parameter IDs and
their associated values.

6.2 Get Record Command and Response

The Get Record Command and the associated response are used to atomically query a record that
contains a consistent set of parameters. The structure of the command and response packets is the same
as for Get Command, except for the opcodes:

19H get record command opcode

1AH get record response opcode

The difference between Get Command and Get Record Command is in the way the remote unit services
the request. The Get Record Response returns a set of matching parameters, correlated in time.

For example, if Get Record Command is used to query geographical coordinates the protocol guaranties
that longitude and latitude come from the same positioning sample.

6.3 Set Command and Response

The Set Command and the associated response are used to set equipment configuration and operational
parameters. The computer can use a single packet to set any number of parameters, as long as their IDs,
data types and values can fit into the number of bytes available to the user data segment.

The parameters being set do not have to be of the same data type. A set command can contain any
mixture of valid Boolean, integer, floating point and text parameters. A typical set command for a list of
parameters has the following form:

STX SRC DST SIZE 12H n PID1 DT1 VAL1 PID2 DT2 VAL2 … PIDn DTn VALn CHK ETX

 MACS Communication Protocol Specification

19

Where:

STX byte marks the start of the packet

SRC contains two-byte source address

DST contains two-byte destination address

SIZE contains two-byte size of the user data

12H is the set command opcode

n byte contains the parameter count

PID1 … PIDn represent two-byte parameter IDs

DT1 … DTn represent two-byte data types

VAL1 … VALn represent values associated with PID1 … PIDn

CHK byte contains the checksum

ETX byte marks the end of the packet

The equipment checks the consistency of the command and may detect and return one of the following
errors:

• Invalid size

• Invalid parameter count

• Invalid parameter ID

• Invalid parameter data type

• Invalid parameter value

• Read-only parameter

The equipment first validates the entire packet and then sets parameter values. If any errors are
encountered, none of the parameter values is changed.

If there are no errors in the set command packet, the equipment sets the parameter values as requested,
reads back the new values and sends them to the computer. The computer typically uses the set response
to verify the newly set parameter values. The structure of the response packet is exactly the same as the set
command, except that it contains opcode 14H.

The following example illustrates a set command, which sets the frequency to 91.12 MHz and gain to
24.78 dB. Please note that the parameters used in this example are fictitious and do not correspond to any
actual equipment.

Computer address: 1

Unit address: 2

Parameters:

Parameter Name Parameter ID Data Type Present Value

Frequency 17H Single-precision 91,120 kHz
Gain 18H Double-precision 24.78 dB

 MACS Communication Protocol Specification

20

To set these parameters, the computer will send a packet that contains the following set command:

02 00 01 00 02 02 00 14 12 02 02 00 17 04 42 B6 3D 71 00 18 0A 14 7A E1 48 40 38 C7 AE 68 03

x – header and trailer

x – parameter ID

x – data type

x – parameter value

The equipment will respond with a set response as follows:

02 00 02 02 00 01 00 14 14 02 02 00 17 04 42 B6 3D 71 00 18 0A 14 7A E1 48 40 38 C7 AE 6E 03

6.4 Set Record Command and Response

The Set Record Command and the associated response are used to atomically set a consistent set of
parameters, with the values that belong to the same record. The structure of the command and response
packets is the same as for Set Command, except for the opcodes:

1BH set record command opcode

1CH set record response opcode

The difference between Set Command and Set Record Command is in the way the remote unit services
the request. The Set Record Response sets a list of parameters atomically, at the same time.

6.5 List Command and Response

The List Command and the associated response are used to query a list of values of the same numerical
type, identified by a single parameter ID that applies to the entire list. The computer can use a single packet
to query more than one list, as long as their IDs and values can fit into the number of bytes available to the
user data segment. If the size of the lists exceeds the available space, the equipment returns an appropriate
error response.

The List Command is typically used to query an array or a linked list of numerical values. Such a list is
identified by a single parameter ID and all values on the list must be of the same type. A typical list
command has the following form:

STX SRC DST SIZE 16H n PID1 DT1 PID2 DT2 … PIDn DTn CHK ETX

Where:

STX byte marks the start of the packet

 MACS Communication Protocol Specification

21

SRC contains two-byte source address

DST contains two-byte destination address

SIZE contains two-byte size of the user data

16H is the list command opcode

n byte contains the parameter count

PID1 … PIDn represent two-byte parameter IDs which identify the requested lists

DT1 … DTn Represent a single-byte data type

CHK byte contains the checksum

ETX byte marks the end of the packet

The equipment checks the consistency of the command and may detect and return one of the following
errors:

• Invalid size

• Invalid parameter count

• Invalid parameter ID

If there are no errors in the get command packet, the equipment returns the requested lists, each of
which consists of the ID, data type, value count and a list of values:

STX SRC DST SIZE 17H n PID1 DT1 CNT1 VAL10 VAL11 … … PIDn DTn CNTn VALn0 VALn1 … CHK ETX

Where:

STX byte marks the start of the packet
SRC contains two-byte source address
DST contains two-byte destination address
SIZE contains two-byte size of the user data
17H is the list response opcode
n byte contains the parameter count
PID1 … PIDn represent two-byte parameter IDs which identify the requested lists
DT1 … DTn represent a single-byte data type
CNT1 … CNTn represent a single-byte value count for each list
VALnm represent requested numerical values
CHK byte contains the checksum
ETX byte marks the end of the packet

If the equipment cannot fit the entire list of parameters into the response packet, it returns a “to many
parameters” error.

A Get Command performed on a parameter that contains a list returns the number of values in the list.
The value count is encoded using the same data type assigned to the elements of the list.

The following example illustrates a list command, which queries an array of integer values. Please note
that a list used in this example is fictitious and does not correspond to any actual equipment.

Computer address: 1

 MACS Communication Protocol Specification

22

Unit address : 3

List parameter ID: 31H

To query the list, the computer will send a packet that contains the following get command:

02 00 01 00 03 03 00 05 16 01 00 31 02 02 23 03

x – header and trailer

x – parameter ID

x – data type

Note that destination address and last data type contain STX substitution bytes.

The equipment will respond with a list response as follows:

02 00 03 03 00 01 00 D3 17 01 00 31 02 02 32

00 00 00 04 00 00 00 08 00 00 00 0C 00 00 00 10

00 00 00 14 00 00 00 18 00 00 00 1C 00 00 00 20

00 00 00 24 00 00 00 28 00 00 00 2C 00 00 00 30

00 00 00 34 00 00 00 38 00 00 00 3C 00 00 00 40

00 00 00 44 00 00 00 48 00 00 00 4C 00 00 00 50

00 00 00 54 00 00 00 58 00 00 00 5C 00 00 00 60

00 00 00 64 00 00 00 68 00 00 00 6C 00 00 00 70

00 00 00 74 00 00 00 78 00 00 00 7C 00 00 00 80

00 00 00 84 00 00 00 88 00 00 00 8C 00 00 00 90

00 00 00 94 00 00 00 98 00 00 00 9C 00 00 00 A0

00 00 00 A4 00 00 00 A8 00 00 00 AC 00 00 00 B0

00 00 00 B4 00 00 00 B8 00 00 00 BC 00 00 00 C0

00 00 00 C4 00 00 00 C8 0A 03

x – parameter value

x – value count

Note that the above picture represents a single continuous packet, with highlighted parameter IDs and
their associated values.

 MACS Communication Protocol Specification

23

6.6 Event Report

The Event Report is an unsolicited message sent by the remote unit, without a query from the computer.
Typically, event reports may be time based, or may be sent when there is a change in the status, or some
threshold is reached. The remote unit can use a single packet to report changes in any number of
parameters, as long as their IDs and values can fit into the number of bytes available to the user data
segment:

STX SRC DST SIZE 18H n PID1 DT1 VAL1 PID2 DT2 VAL2 … PIDn DTn VALn CHK ETX

Where:

STX byte marks the start of the packet

SRC contains two-byte source address

DST contains two-byte destination address

SIZE contains two-byte size of the user data

18H is the event report opcode

n byte contains the parameter count

PID1 … PIDn represent two-byte parameter IDs

DT1 … DTn Represent single-byte data types

VAL1 … VALn represent values associated with PID1 … PIDn

CHK byte contains the checksum

ETX byte marks the end of the packet

The event report format is the same as the get command response. The only difference is the value of
the opcode.

The computer does not send any packet to acknowledge the receipt of an event report.

6.7 Error Response

Before servicing any request received from the computer, the equipment always performs a consistency
check on the received packet and validates the opcode, parameter IDs, data types and values. If any errors
are found within the packet, the equipment does not service such request and instead returns an error
response.

The error response always contains information on the first error encountered while processing the
packet. This means that error responses return information on one error only, as the principal reason why
the packet was rejected.

If detected error is related to the parameter list, the response also contains the index of the parameter in
question, starting from 1.

The error response has the following form:

 MACS Communication Protocol Specification

24

STX SRC DST 03H 15H ERR INDEX CHK ETX

Where:

STX byte marks the start of the packet

SRC contains two-byte source address

DST contains two-byte destination address

03H is two-byte size of the user data, which is always 3

15H is the error response opcode

ERR byte contains the error code

INDEX Is the parameter index, starting from 1. If not applicable, this field contains 0

CHK byte contains the checksum

ETX byte marks the end of the packet

Possible error codes are defined as follows:

 Error Code Index Description

1 Invalid size 01H Yes The value in the size field does not match the actual
size of the user data segment.

2 Invalid parameter count 02H No The value in the parameter count field does not match
the actual number of parameters in the user data
segment.

3 Invalid parameter ID 03H Yes The parameter ID is invalid for given equipment.
4 Invalid data type 04H Yes The requested data type does not match the actual

data type.
5 Invalid value 05H Yes The requested value is invalid for a given parameter.
6 Read-only parameter 06H Yes An attempt was made to set parameter which is read-

only.
7 Invalid port address 07H Yes Reserved.
8 Invalid port type 08H Yes Reserved.
9 Ports not initialized 09H Yes Reserved.
10 Points not initialized 0AH No Reserved.
11 Invalid bit position 0BH Yes Reserved.
12 Lock not created 0CH No Reserved.
13 NV memory failed 0DH No Failed to save a non-volatile parameter
14 Failed to lock 0EH No Failed to service request because a lock could not be

obtained within expected time interval.
15 Open file failed 0FH No Failed to open a file required to service request.
16 Debugger already open 10H No An attempt was made to open internal trace when the

trace was already running.
17 Unknown error 11H Yes An error has occurred that is not defined in this list
18 Invalid range 12H Yes The requested value is out of range for a given

parameter.
19 Invalid parameter name 13H Yes Could not find a parameter ID associated with a given

parameter name.
20 Invalid unit address 14H No An out of range number was specified as a unit

address.
21 Invalid packet size 15H No Calculated packet size does not match the actual

 MACS Communication Protocol Specification

25

packet size, or packet exceeds maximum packet size.
22 Unexpected response 16H No The actual response opcode does not match the

expected response opcode.
23 Serial port error 17H No A communication error was encountered while sending

or receiving packets over a serial line.
24 No response 18H No A timeout has occurred while waiting for the response.
25 Invalid checksum 19H No Calculated checksum does not match the checksum

byte in the packet.
26 Unsupported request 1AH Yes The packet contains an unsupported opcode value, or

the requested get or set operation is not applicable for
a given parameter.

27 Failed to unlock 1BH No Failed to unlock upon servicing request.
28 IPC not created 1CH No Failed to create an interprocess communication

mechanism, such as shared memory, or a pipe.
29 IPC failed 1DH No An error has occurred while using an interprocess

communication mechanism, such as shared memory,
or a pipe.

30 HW write error 1EH Yes Failed to write to a hardware device.
31 HW read error 1FH Yes Failed to read from a hardware device.
32 Networking error 20H A communication error was encountered while sending

or receiving packets over a network connection.
33 No memory 21H No There is no enough memory to execute command.
34 Callback failed 22H No Callback function failed or not found

For example, if a set command attempts to set a read-only parameter 1 in the list to a certain value, the
equipment will return the following error response:

02 00 02 02 00 01 00 03 03 15 1A 01 0E 03

x – error code

x – error index

